It is an automobile safety system that allows the wheels on a motor vehicle to maintain tractive contact with the road surface according to driver inputs while braking preventing the wheels from locking up (ceasing rotation) and avoiding uncontrolled skidding.
It is an automated system that uses the principles of threshold braking and cadence braking which were practiced by skilful drivers with previous generation braking systems. It does this at a much faster rate and with better control than a driver could manage.
ABS generally offers improved vehicle control and decreases stopping distances on dry and slippery surfaces for many drivers; however, on loose surfaces like gravel or snow-covered pavement, ABS can significantly increase braking distance, although still improving vehicle control.
There are four main components to an ABS system:
1 Speed sensors
2 Valves
3 Pump
4 Controller
Speed Sensors:
The anti-lock braking system needs some way of knowing when a wheel is about to lock up. The speed sensors, which are located at each wheel, or in some cases in the differential, provide this information.
Valves:
There is a valve in the brake line of each brake controlled by the ABS. On some systems, the valve has three positions:
In position one, the valve is open; pressure from the master cylinder is passed right through to the brake.
In position two, the valve blocks the line, isolating that brake from the master cylinder. This prevents the pressure from rising further should the driver push the brake pedal harder.
In position three, the valve releases some of the pressure from the brake.
Pump:
Since the valve is able to release pressure from the brakes, there has to be some way to put that pressure back. That is what the pump does; when a valve reduces the pressure in a line, the pump is there to get the pressure back up.
Controller:
The controller is a computer in the car. It watches the speed sensors and controls the valves.